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HANGING-CHAIN IMPACT DAMPERS: A SIMPLE METHOD
FOR DAMPING TALL FLEXIBLE STRUCTURES
By Wilmer H. Reed III
NASA Langley Research Center

ABSTRACT

This paper investigates a simple concept of achieving damping in order to
suppress wind-induced oscillations of a class of erected structures such as
antennas, stacks, and towers. It is shown that a chain, covered with a rubber
sleeve and suspended with freedom to impact against a vertical channel, is
capable of absorbing significant energy associated with transverse oscillations
of the channel. The effects of various parameters on the performance charac-
teristics of such a damper are determined experimentally in terms of mechanical
impedance measurements. The experimental data are found to be in reasonable
agreement with a simplified theory which is derived on the basis of a single-
particle impact damper. Chain dampers installed on a TO-foot-tall erected
launch vehicle increased the damping of the structure by a factor of up to 3.
Results of this generalized research study indicate that the performance of
hanging-chain impact dampers can be predicted with accuracy suitable for design

purposes.
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HANGING-CHAIN IMPACT DAMPERS: A SIMPLE METHOD
FOR DAMPING TALL FLEXIBLE STRUCTURES
By Wilmer H. Reed ITT”
NASA Langley Research Center

INTRODUCTION

Wind-excited oscillations of tall flexible structures can be significantly
reduced by the addition of damping to the structure. This paper investigates
a simple method of increasing the damping of such structures. The basic con-
cept involves a chain that hangs in a vertical channel., A clearance gap is
provided such that when the channel is attached to a vibrating structure the
chain periodically impacts against the walls of the channel. Since these
impacts provide the mechanlsm for dissipating vibration energy of the struc-
ture, the hanging-chalin damper may be identified as belonging to a class of
impact or acceleration dampers.

The first -known systematic regearch on impact dampers was conducted in
1940 by Arthur A. Regier at NACA/NASA Langley. Regier's study, which was
unpublished, and a subsequent study by Lieber and Jensen (1945) treated the
free vibration of a lightly damped structure to which is attached a mass
particle in a container such that the particle is free to move relative to
the container. These and more recent studies of impact dampers on idealized
single-degree-of-freedom systems (Arnold (1957), Warburton (1957), Masri (1967),
and Egle (1967)), have led to a reasonably good understanding of the phenomenon
involved; however, at present few practical applications of impact dampers can

be cited.
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A recent practical problem, whose solution, incidentally, led to the
present study of hanging-chain dampers, is reported by Farmer and Reed (1966),
and Reed and Duncan (1967). This problem involved wind-excited osecillations of
cylindrical masts utilized in U.S. Navy antenna systems. The antenna element
is a 2i-foot-tall cantilevered structure, the upper two-thirds of which is a
6-inch-diameter aluminum pipe. Oscillations of the mast in light to moderate
winds are believed to be the cause of crack damage often observed in a load-
carrying fiber-glass insulator at the base of the mast. A simple "fix" was
found to be a small cluster of chains which were covered with plastic tubing
and hung inside the tip of the mast. The effect of the chains, which weighed
12 pounds, was to increase the damping of the 260-pound antenna by a factor of
about 20. Wind-tunnel tests of a full-scale antenna verified the effectiveness
of the damper in bringing about significant reductions in vibration response.

The primary focus of this papér is on a generaligzed research investigation
of chain impact dempers. By means of mechanical impedance meagurements, the
effects of various chain-damper parameters such as clearance gap, chain length
and weight, amplitude and frequency of vibration are evaluated. These experi-
mental data are then compared with predictions of a simplified theory.

Finally, an experiment involving the installation of chain dampers on a
T0~foot-tall launch vehicle is described to illustrate the performance poten-

tials of chain dampers on relatively large structures such as smokestacks and

towers.

SYMBOLS
Co equivalent viscous damping coefficient of damper
Co critical damping, Moy



Xst

ZS’ZD

&

total clearance gap between chain and container
coefficient of restitution
excitation force

fundamental component of F(t)

gravitational constant

JT

structural spring constant

chain length

chain mass per unit length

mass of free particle in impact damper
effective mass of damper

Jumped structural mass

mmber of impacts per cycle

real and imaginary parts of fundamental components of
time

integration time used in impedance measureménts
absolute displacement of damper mount

static deflection, Fo/k

absolute digplacement of chain or free mass particle

F(t)

mechanical impedance of structure and damper, respectively

logarithmic decrement
mass ratio, 1m/M

phase angle defining time of impact

circular frequency

fundamental frequency of hanging chain, 1.20 ¢é7{

undamped natural frequency, k/M



Subscripts:

-, conditions immediately before and immediately after impact

crit critical gap ratio or frequency ratio above which steady-state
impacfs do not occur

opt optimum damping

max maximum
MECHANICAL IMPEDANCE OF IMPACT DAMPERS

Configurations Studied
The damper configuration chosen for study in this paper is shown schemati-
cally in figure 1. Parameters to be varied include the chain length 1, the
chain mass per unit length m, the gap distance d, and the amplitude and fre-
quency of sinusoidal vibration. For all tests the chains were covered with a

l/l6—inch-thick rubber sleeve which served to greatly reduce impact noises.

Basic Impedance Concepts

In previous investigations the performance of impact dampers has been
evaluated usually in terms of the effect on response of a single-degree-of-
freedom mass-spring system. Although the mass-spring system is one of funda-
mental importance, a somewhat more general approach based on mechanical impedance
concepts will be followed in the present study. This alternate approach can be
utilized to predict the effect of attaching a damper to an arbitrary structure
whose impedance at the damper attachment point is known.

To illustrate impedance methods, figure 2 shows a chain damper mounted on
a single-degree-of-freedom mass-spring oscillator. The force required to osecil-

late the damper container horizontally is expressed, for convenience, in terms



of an equivalent viscous damping coefficient ce and an effective mass mgy.

The total force required to drive the system with demper attached is then

F(t) = (Mﬁ * kx)structure * (meﬁ * cei)damper (1)
For sinusoidal motions x(t) = x,el®® and F(t) = F el®t, equation (1) becomes
7o = [Z5() + zp(x,0)]%, (2)
where
Zg(w) = i(aM - %i)
Zn(x,m) = cg + iomg

are the mechanical impedances of the structure and damper.* The damper imped-
ance ZD(x,w) is expressed as a function of x as well as w to indicate
that, as will be shown later, the coefficients co and m, depend on the

amplitude of motion.

Equation (2) can be reduced to a convenient nondimensional form as follows:

Xst » \° me A 7 w\2 ce
—_=r =]l - [ —_ DN ZE
Xg (wn) (l s ml) Tt u(ah) miw ()

*T4 should be noted that the force required to drive the damper in simple

harmonic motion is not sinusoidal. It is instead a series of alternating
impulses which occur twice per cycle when the chain impacts against the con-
tainer wall. However, when F(t) is expressed as a Fourier Series it can be
shown that the energy dissipated per oscillation cycle is a function only of the
fundamental component of‘the series. The term Fo in equation (2) is therefore

taken to be the fundamental component of F(t).



where

Xst T 02
a? = 5
The nondimensional damper parameters to be determined are E% and 5%5.

Test Apparatus and Data Reduction

Figure 3 shows a photograph and schematic diagram of the test apparatus
with which damper parameters are measured. The damper is mounted on a light
platform which is comnstrained, through flexures, to move horizontally. The
platform is driven sinusoidally by a variable-speed electric motor connected by
linkages to a high inertia flywheel. The driving force F(t) is measured
with a strain-gage load cell whose electrical output is amplified and fed to a
.8in-cos potentiometer. Since the potentiometer is mechanically connected to
the flywheel drive shaft, its output voltages are proportional to F(t)cos wbt
and F(t)sin wt. By use of analog compubter components these products are inte-
grated over a large number of cycles to obtain the fundamental components of
F(t) ﬁhich are in phase and 90° out of phase with the displacement. With

F(t) assumed to be of the form mei + c.x and with x = X, cos wt it can be

e

shown that these integrations produce

T

R(w) = -j; F(t)cos ot dt = - % MeX 7T
T . 1

I{w) = - . F(t)sinwt dt = - 3 cexul



where the integration time T dis large relative to the period of oscillation.
(In these tests T was 20 seconds and the period varied from 2.0 to 0.2 sec.)
Actually, the quantities m, and c¢e are determined from differences between
the integrator outputs with and without the chain in the container. Thus, the
container and oscillator platform masses are not included in m,, and, simi-
larly, the small residual damping in the platform support system is removed

from ce.
RESULTS AND DISCUSSION

Effect of Various Parameters on Chain Damper Impedance
Frequency.- A typical plot of damper parameters Se_ and Z& as a func-

mw im
tion of frequency is presented in figure 4. The frequency scale has been nor-

malized with respect to fundamental natural frequency of s hanging chain, which

is

o = 1.20\g/1

Associated with these curves are three distinct regimes of chain vibration
which were visually observed; these regimes are identified in figure 4 as I, II,
and III. In region I, which extends from ayml = 1 to approximately “Vhi =3,
only a fraction of the chain length impacts against the container wall. TImpact
vfirst occurs at the lower end of the chain when the forcing frequency coincides
with fundamental chain frequency. With further increase in frequency, impact
occurs over an increasingly greater portion of the chain until finally the

chain impacts over virtually its entire length. Region II begins at this point
and is characterized by a tendency for the impedance curves to level off at a

constant value. Depending on the gap distance d (or more particularly the



nondimensional ratio d/xo) the chain motion in Region II is found to follow
one of two patterns: If the gap ratio is less than a critical value, the chain
continues to impact along its full length for all higher frequencies and the
impedance is essentially ind.epend.ent‘ of frequency. This characteristic is shown
in figure 4 by curves for d./xo = 1.72. If the gap ratio is greater than about
4.0, however, there is a particular frequency at which chain vibration motions
abruptly change. Below this critical frequency (w/wl)crit the chain izhpacts
twice per cycle against the container wall. Tor frequencies above the
(w/wl)crit , Region III shown in figure 4 for d/x, = 4.78, there are no impacts
or irregular impacts and consequently the damping parameter abruptly drops to a
low value. This low residual damping is believed to be associated with the
friction forces in ;bhe vibrating chain. Also note that the in-phase impedance
component m./ml changes sign at the critical frequeney indicating that the
reactance has changed from an inertia-type force to a spring-—tyjpe force,

Further insight into this sudden change in system behavior with small fre-
gquency changes may be gained by examining the effects of another basic system
parameter which is the gap-distance ratio d/x,.

Gap distance.- Before experimental data are presented which show the effects

of gap distance on damper impedance, it is helpful to first loock at some theo-
retical predictions. As was previously noted in figure 4 when the driving fre-
guency is greater than about 3 times the fundamental natural chain vibration
frequency, impact occurs along the full chain length and damping is essentially
independent of frequency. Thus, in Region II the chain damper appears to behave
as a classical impact damper in which the damper mass is considered to be a
single particle. In the Appendix of this paper theoretical expressions are

derived for the impedance of a single-particle impact damper of the type

8



treated by previously mentioned investigators. In this analysis the chain is
assumed to act as a vertical member which is free to translate laterally through
a distance td/2 relative to the container. Gravity restoring forces have been
neglected and the particle mass is assumed to be ml, the total mass of the
chain. With the assumption of two impacts per cycle the following equations are

obtained in the Appendix

mn 7w\l - e

Ce _ }_(l + e)sinch (%)

De - 41+ e\giq @ cos @ (5)
im T\l - e
d l+e
2 = [x[==Elsing - 2 6
o (l - e)s no cos @ (6)

where e 1is the coefficient of restitution between the mass and container” and
@ 1is a phase angle which specifies the container displacement at the time of
impact.

The impedance parameters defined by these equations are plotted in fig-
ure 5 as a function d/x, for specified values of e. An important fact to
note in figure 5 is that for constant e +the impedance parameters can be
either of two possible values when d/xo 2 2.0. From the experimental data
shown in figure 6 it appears, however, that only the upper portion of the curves
represents a stable solution.. Furthermore, both theory and experiment indicate
that, when d/xo exceeds a certain critical value, impacts will no longer
occur. Thus, associated with the critical frequency mentioned previously, there

is similarly a critical gap ratio boundary separating a region of stable

*These equations apply wvhen e > O; when e = O alternate equations given

by (A19) in Appendix apply.



steady-state impacts (Region II) from one of no impacts or intermittent impacts

(Region III).

Restitution coefficient e.- The experimental curves slown in figure 6 are

for different frequency ratios. These plots are to be comured with theoretical
curves for which the e +values were selected to best fit tﬂe experimental data.
The values of e for the chains used in these experiments although not accu-
rately known, are believed to fall in the range shown in figure 6. Note in the
figure that the lowest frequency ratio (ayai = 3.68) is asso:ziated with the
highest coefficient of restitution (e = 0.40) and vice versa. Thus, it can be
reasoned that if e does in fact fall off with increasing .‘requency in the
mamner shown in figure 6, then the critical fr-equency illustrated in figure 4
for the d/xo, = 4.78 curve can be interprete:. as being the :’requency associated
with a particular e value for which (d./xo)crit = 4,78,

Although further study is required to explain more fully the mechanism
which would cause e to vary with frequency, ihe following conjecture is
offered. For a given gap distance, impact fo:»es on the chalin increase with
increasing frequency. Static friction betwe:: adjoining chain links may be
such that the chain acts essentially as a siigle body at low frequencies; at
higher frequencies, where impact forces excesd the friction breakout forces, a
portion of the energy formerly associated w.th rebound energy is now dissipated
by friction between chain links, thus leadirg to a reduced e value,

Tmpact stability boundaries.- As indiceted in the Appendix, regular two-
2D J

impact-per-cycle motion of the system is posiible only for a particular range
of e and d/xo values. Beyond the boundaiies of this range, impacts either
do not occur or there are more than two impac 5 per cycle. These boundaries

are presented in figure 7. The curve on the 1ight defines the upper limit
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of cl/xO for which there are two impacts per cycle. The (d'/xo)cri t value
discussed in the previous figure would correspond to points on this boundary.
The curve on the left defines the lower limit of d./x0 for two-impact-per-
cycle motions. This boundary also appears in figure 5 as the line which termi-
nates the family of curves as d./xo approaches zero. For d/xo values below
this lower limit the rebound velocity of the mass relative to the container is
such that after an initial impact against one side of the container the container
overtakes the mass causing a second impact. Although in this region where

N >. 2 the assumptions of the analysis no longer hold, the damper does not nec-
essarily become ineffective as it does when the right-hand boundary is crossed
in going from regions N =2 +to N = 0.

To further define impact stability boundaries, data obtained on gll chain-
demper configurations of this study are summarized in figure 8. This figure
shows the experimentally determined relationship between the parameters
(a/%0)

and 6. Also indicated by a second ordinate in figure 8 are the e values

orit and (a)/wl) orit which were discussed previously in figures 4
associated with the theoretical stability boundary between N =2 and N =20
in figure 7. Note that with increasing frequency the experimental stability
boundary appears to asymptotically approach the minimum value predicted by

theory which is (d/x,) = 3.75 with e = 0. (See fig. 7 and Appendix.)

crit
Optimum Damper Performance

From the family of damping curves plotted in figure 5, it is evident that

for a given d/xo there is a particular e for which damping is maximum, and

similarly for a given e there is an optimum value of d./xo. As indicated by

equation (4) maximum damping occurs when ¢ = n/2. The impedance parameters for

11



optimum damping are therefore

(Ss.) ! Lt_g)
T opt T\l - e

(’_“_e) -0
im opt

(1)

The corresponding optimum gap ratio is from equation (6)

), 3

Thus, when equations (7) and (8) are combined the following equation for ‘the

loci of maximum damping as a function of gap distance is obtained

[&]
(__e._> i} _&_(}_;1_) (9)
Tmw opt 1(2 L8] opt_

An interesting feature of this equation is that it does not depend explicitly
upon the coefficient of restitution e. Since e 1is essentially an undetermined
parameter in the present study of chain dampers, equation (9) suggests another
summaxry-type presentation of the experimental data. Accordingly, a COmpilation
of all (ce/lma))opt values obtained during the tests are plotted in figure 9
against the corresponding value of (d/xo).

The data points in figure 9 encompass not only variations in the length and
running mass of the chain, as indicated by the symbols, but also independent
variations of d and x,. In addition, the points cover frequency ratio varia-
tions from approximately “Vhi = 2.0 to “yhi = 7.0. As noted previously, the
lower frequencies are associated with the higher damping values and vice versa.

It may be concluded from experimental data presented in this and preceding

figures that the performance of chain dampers can be predicted with reasonable

12



acecuracy by theory for a single mass impact damper providing an account is taken

of the inferred variation of e with frequency ratio.
APPLICATION OF RESULTS FOR SINGLE-DEGREE-OF-FREEDOM SYSTEM

Having evaluated the mechanical impedance characteristics of chain dampers
let us next attempt to interpret these results in terms of forced response of a
single-degree-of -freedom mass~-spring oscillator with a chain damper attached.
The particular quantity of interest will be the amplitude of maximum response.

With reference to equation (3) it will be assumed that the forced response
amplitude ratio Xo/xst is maximum (Xst/xo = minimum) at a frequency which

causes the real part of equation (3) to vanish. This frequency is

- 1 (10)

o
@n / m
l+p—£
ml

which when substituted into the imaginary part of equation (3) gives for the

amplitude of maximum response

m
l+“_..e..
Xq ml
v I (11)
c
5% Imax g o—
[5173)

If the damper qperatés under optimum conditions as given by equation (7)

the maximum response equation becomes

Xo _ (1l - e) (12)
Kot (1 + e) ‘
max

and the associated optimum gap distance in terms of static deflection is from

equationé (8) and (12)

13



7 (
= — 13)
by,
Equivalent expressions derived by Arnold (1957) and Warburton (1957) for
w/ay, =1 are
Xo _n(1l + )1 - e) (11)
Totly, | WL+ o)
and
(_d__) - f +1 (15)
x
st opt

On the basis of experimentally determined chain damper impedance data it
appears that for a conservative estimate of optimum damper performance one
c m
could assume -8— = 2.0 and -2 = 1.0. These values with equations (9) and

Tmw im
(11) lead to the following expressions for maximum response and the maximum gap

distance
o =ity (16)
st lpax 2
and.
(_g_) =221 4+ ) (17)
Xst opt. by

It is interesting to note that if a value of e = 0.22 1is used in equa-
tion (14), equation (16) is obtained.
It is also informative to compare the optimum performance of chain dampers

with that of equivalent linear viscous damping. The maximum response of a

1k



lightly damped structure with viscous damping is

=L (18)
L
max c

n

c
Thus, by equating equations (16) and (18) it is found that a chain damper under

best operating conditions is equivalent to a viscous damping ratio of

(f—) = £ (29)
c equiv L+u

CHAIN DAMPER INSTALTATION ON AN ERECTED IAUNCH VEHICLE

In order to evaluate the performance of chain dampers on an actual struc-
ture, an experimehtal damper installation was attached to a TO0-foot-tall Jupiter
vehicle at Wallops Island, Virginia. This surplus vehicle had been used pre-
viously by Foughner and Duncan (1966) in an extensive research program to study
the effects of ground wind loads on erected launch vehicles, and was therefore
fully instrumented for dynamic response measurements.

The damper installation on the vehicle is shown in figure 10. A Lk-foot-
wide band of 1/32-inch sheet metal, bent to form a series of vertical channels,
was wrapped. around the vehicle near the top. With the wvehicle skin as an inner
wall, fifty six 2- by 4-inch channels were formed. Half of these channels
were divided by sheet-metal inserts which split the 2- by 4-inch channel
into two 2- by 2-inch channels giving a total of 84 channels. A L4O-inch-
long, 6-pound chain covered with a rubber sleeve was hung in each channel.
These chains were the heaviest of the three chain configurations evaluated in
the impedance tests (3/8-inch link size, 0.148 1b per ft). The total damper-
chain weight was about 500 pounds which is gpproximately 5 percent of the

vehicle weight without dampers. The fundamental natural cantilever bending

15



frequency of the vehicle alone is 2.0 Hz which is about 3 times greater than the
fundamental chain frequency ah/ai ~ 3,0 . Also, the clearance gaps between the
qhain and the channel walls is 0.45 inch and 2.45 inches for the 2-~inch and
4-inch channel sides, respectively.

The effect of chain dampers on free vibration response of the vehicle in
its fundamental mode is as shown in figufe 11. This figure presents the loga-
rithmic decrement of successive vibration cycles as a function of the vehicle
displacement amplitude at the center of the damper. The vibration time his-
tories from which the decrements were obtained are also presented in the figure.

Note that the damper has maximum effectiveness for amplitudes between 0.075
and 0.15. For vibrations in the direction of the narrow channel dimension
these amplitudes are equivalent to d/xb ratios of 6.0 and 3.2 which, as pre-
viously indicated, falls within the damper stability boundary for 2-inpact-per-
cycle motion (see fig. 8 at ath_= 3.0). For motion parallel to the 4-inch
channel dimension, howevér, the chains in the rectangular channel are ineffec-
tive since d/x, is always greater than 10.0. (The highest critical d4/x,
ratio obtained in the impedance test was 8.) Also, it is evident that at very
low amplitudes the damper effectiveness is lost because the d/xo ratio for
all chains has exceeded the critical value for which impacts are possible. To
extend effective damper operation over a broader range of amplitudes, one might
use more variations in the gap distance or, as suggested by Reed and Duncan

(1967), tapered channels.
CONCIUDING REMARKS

This paper investigates a simple concept of achieving damping in a class of

erected structures such as antennas, stacks, and towers. It is shown that a

16



chain, covered with a rubber sleeve and suspended with freedom to impact
against a vertical channel, is capable of absorbing significant energy associ-
ated with transverse oscillations of the channel. The performance character-
istics of such a damper are determined experimentally in terms of mechanical
impedance measurements. Experimental data are presented to show the effects of
such'parameters‘as length and mass of the chain, clearance gap distance, and
amplitude and frequency of forced sinusoidal motion. These data are found to
be in reasonable agreement with a simplified theory which is derived in the
Appendix of the paper on the basis of a single-particle impact damper.

In an experiment to evaluate performance of this type damper on a rela-
tively large structure, chain dempers were installed on a TO-foot-tall erected
launch vehicle. It is shown that the damper, which weighed about 5 percent of
the vehicle weight, increased the damping of the structure by a factor of up
to 3.

From results of this generalized research study it is felt that the per-
formance of hanging-chain impact dampers can be predicted with accuracy suitable

for design purposes.
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APPENDIX
IMPACT DAMPER ANALYSIS

Deﬁvati‘on of Impedance Equations

The idealized impact damper to be considered is shown in figure 12. A
frictiohless mass particle my, is free to oscillate in a container within a
clearance gap distance d. ILet F(t) be the force required to drive the con-
tainer sinusoidally at a prescribed amplitude X, and frequency , and let
y(t) be the absolute displacement of mp. It is assumed that twice per cycle,
at equally spaced time intervals ﬁ/w, the particle impacts against either end
of the container. The time of impact is defined by the phase angle ¢ in the

container displacement equation
x(t) = X, cos(uwt + @) (A1)

such that impacts occur when the displacement is x, cos @, X, cos(gp + =), ete.

The velocity-displacement or "phase-plane" diagram shown in figure 12(b)
provides a convenient graphical representation of the combined motions of the
container and the mass particle. In this diagram the rotating velocity-
displacement vector of each container wall describes a circle of radius Xq
and. whose center lies on the x-axis a distance *d/2 from the origin.

Before and after impact the particle moves at a constant velocity which is
represented in the phase plane by a horizontal line. Immediately before impact
at point A the velocity of the particle relative to the container is x_ - &_;

immediately after impact it is x4 - y,.. The relationship between these veloc-

ities is determined by the coefficient of restitution through the equation

18



X -y, = -e(:‘c_ - j'_) (a2)

For symmetrical steady-state motion the particle velocity after impact is equal

and. opposite to its value before impact

Yo =¥ (a3)

Also, during impact it is assumed that the driving force F(t) is capable of

maintaining the prescribed sinusoidal velocity of the container so that
X =X (Ak)
From equation (Al) the container velocity at impact A (t = 0) is
x(0) = ~axy sin @ (a5)

Thus, with equations (A3) through (A5) substituted into equation (A2) the veloc-

ity of the particle immediately after impact at A is found to be

¥.(0) = -wxo(:]L- + e)s.in P (A6)

Similarly the particle velocity immediately following the second impact, which

occurs at B one-half an oscillation cycle later, is

. k11 l + e
) = wox sin(p + x (A7)
() - ~mo(E-EJotnto + 7
In the time interval =/w between impacts A and B the particle travels
from one end of the container to the other through a distance d. From inte-

gration of the relative velocity

x/w
_ fo (7, - %(t))as

4 =
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and use of equations (Al) and (A6) this distance is

d _ n}-—t—qSinq)-2coscp (AB)

X% | 1-e

This equation defines the gap distance as a function of e and @. Implicit
in the equation is the assumption that upon impact the particle immediately
rebounds from one side of the container and makes no further contact with the
container until reaching the opposite side. When e approaches zero the
particle may experience multiple impacts against the same wall or remain in
contact with the wall over & significant part of the cycle. These special cases
will be treated separately later in the Appendix.

Next, consider the driving force F(t). With the assumption that the con-
tainer mass is negligible, F(t) is an impulse which exactly counteracts the
impact reaction force of thé- mass on the container at the instant of collision.

From momentum considerations the impulse is

F(0) At = -2m.7,(0) at A )
1im At—0 Y
F(x/o) &t = -2mgg,(x/0)  at B $ (49)
lim At-0
and
F(t) At =0 elsewhere
1im At-0 ~

In order to derive impact damper impedance parameters cg and me as

expressed in the equation
F(t) = mX + c X (A10)
consider the following integrations over one cycle of oscillation

20



=
=
|

2n/w
= f F(t)x dt (A11)
0

a.nd.’

2
Is L /e F(t)x dt (aA12)

Note that Iy is the work per cycle done by F(t) on the damper.
With the assumed form of F(t) as given by equation (Al0), together with

time derivatives of equation (Al), these integrations produce

I, = nCeWK? (a13)

]

and.

~
li

mga’x 2 (A1k)

From equations (A6), (A7), and (A9) the following equivalent expressions

for Il and. 12 are obtained:

I, = lpmpa:xoe(i '_'_' :)sin% (A15)
and.
I,= lunpw3x o(—i—}t——:-)cos @ sin @ (A16)

Thus, eliminating I, in equations (A13) and (Al5) we obtain

;_ia - g(%_;_z.)sineq) (A17)

and similarly eliminating I, in equations (Alk) and (A16)
e . -li(—-———l + e\)sin @ cos @ (A18)
m, =#\l-e
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These expressions for the equivalent viscoué damping and effective mass,
together with equations (A8), which relates d/x, to @, define the impact
damper impedance for the previously stated assumptions regarding rebound condi-
tions. In relating these equations to the chain damper, the mass my, is
replaced by the total chain mass Im under the assumption that impact occurs
along the full length of the chain. Equations (Al7) and (A18) with e as a
parameter are plotted as a function of d/x, in figure 5.

As mentioned earlier when e —» 0O +the particle does not rebound after
impact. For the condition e = 0, rather than following the rectangular path
shown in figure lE(b), the particle remains in contact with the container after
impact at A until the container accelerates to its maximum velocity. It then
separates from the container with an absolute velocity of -ux, which is
retained until impact at B on the opposite side. The process is then repeated.

To account for conditions of zero elastic rebound (e = O), it is necessary
to modify the preceding analysis as follows: The force term F(t) wili include,
in addition to the impulse due to impact, an inertia force mpi. This addi-
tional force acts from the time of impact until the particle separates from the
container wall at the time X changes sign. Also, the velocity of the particie
prior to impact (i.e., lj_]A= wxo) differs from that derived from equation (A2).
With these modifications applied to the foregoing analysis, the impedance equa-

tions for e = 0 are found to be

‘\
Ce _1 . 2
mpw—n(l+s:mq>)
Mg 1 1 2 » 1 g
L =-=-.20p+%cos @ +— sin Al
S-F9*tTcoso+ = 29 (819)
where
4 - |Z+¢ - cos
= ‘2 9 9 ]
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It should be noted that these equations are applicable for —ﬂ/2 o =S ﬂ/2;
fof ¢ values beyond this range the container accelerates away from the particle
imediately after impact, therefore, the previously developed impedance equations
are appropriate. In figure 5 the curves for e = 0 were determined from both
sets of equations with the transition from one set to the other occurring at

© =g- (d./xo = T[).

Stability Boundaries
The region of steady two-impact-per-cycle motion as a function of d/xo
and e 1is shown in figure 7. The boundary on the right represents the maximum
allowable value of d/x, and the boundary on the left, the minimum allowable
value. To determine the upper limit on d/xo we maximize equations (A8) with

respect to @

) e

cos ® +2s8ingp =0
% )

l-e
from which the ciritical value of ¢ is

-1 —ﬂgl + ez

q)CI'it = tan 2(1 - e)

where for 0SS e 1, 122.5° S o < 90°. Thus, the upper limit on d/x,

(o).
%o /erit

The minimum allowable d/xo for two-impact-per-cycle motion may be found

cerit

becomes

L+ e\
ﬂ(—i———e-)Sln (Pcri_t - 2 cos (Pcrit (A20)

as follows: With reference to figure 12(b) let € be the separation distance
between the particle and the container immediately following an impach at
point A, If this distance becomes zero as the container accelerates to maximum

velocity, a second impact will occur. It can be seen that the container reaches
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maximum velocity at the time -’-t&w'—gl seconds after impact at A. Thus, the
separation distance gt this time is -
/2 - ‘
€ = f @ (y . - X _,_)d:b
o
From equations (A5) and (A6)

_ (1 + e)»(n/2 - @)sin @
= %o 1l -~-e

€ - cos @ (a21)

Therefore, € = 0 when

(L +e)(n/2 - @) = (1-e)S2E2

sin @
or
't L
cot @ P

e = (A22)
cotq>+%—q)

This equation in combination with equation (A8) for d./x0 then defines the left

boundary plotted in figure 7.
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Figure 3.~ Mechanical impedance test apparatus and data-reduction procedure.
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Figure 5.- Theoretical impact damper impedance functions.

0.5
. 0.6
0.4 0.8
0.3
0.2
0.1
e=0
1 1 1 1. 1 I ]
2 4 6 8 10 12 14
//be
@ 0.8
0.5
0'5(
7
2,
o
N> 2 o >
Boundary AN
1 | 1 1 I} ]
2 4 6 8 10 12 14
d/x0



*oouepadmt Jodwep pejorpexd pue peansesw U0 orgeX dBF JO 2091FW -°9 wnﬁmﬂ_m

Axoay],

V juowrrradxd 89°¢ 0¥0
— e LIOBY]J, . .

O juswLredxy 09°¥ %20
.n.3\3 -

g°|8



*ssem Joduep Jo uotjom oToAd~aod-qoedwr-om] 0 soTaepunod -‘) oInBTJ

ON \ﬁ

o1 2 4 S 8 9 2

7 <N

(syordwrou) (=N

il




sgzodurep UTEYO UO sjuswesnsesm Arepunoq L3TTTIRIS qoedur -°Q SINITJ

JLIo AH QW
7/
i4 €

T =T T T T I T

1«1 ] Evox \cv

uordax joedur

X

(0 = ) Lxosyg, 1 10
-1.¢0

=8wm.w joedart ON

v | &
g€ |0
871" | @ w |0
901" | @ w2 |0
€L0°0 | o 61 |0
"u/q1 soyour|
‘S 3 7




G

c

m

w) opt

3.4

3.2

2.8

24

2.0

1.6

1.2

©000Q0 |
3

Theory (equat. 9)

d/xo

Figure 9.~ Optimm damping as gap distance.



Figure 10.- Chain damper installation on Jupiter launch vehicle,
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(2) Model of system.
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(b) Phase plane representation of particle and container motions for e > 0.

Figure 12.~ Idealized single-particle impact damper.
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